
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1353
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Intelligent Mobile Agents for Heterogeneous
Devices in Cloud Computing.

Dr.K.P.Kaliyamurthie1, A.Antonidoss2

1.Professor and Head, Dept. of IT, Bharath University, Chennai-600 073.

kpkaliyamurthie@gmail.com
2.Asst. Prof.(SG), Dept. of CSE,Tagore Engineering College,Chennai,Tamilnadu,India

aro.antoni@gmail.com

Abstract- Cloud computing enables highly
scalable services to be easily consumed over the

Internet on an as-needed basis. A software agent
offers a new computing paradigm in which a

program, can suspend its execution on a host

computer and can transfer to another agent enabled

computer on network so that it could run there. Such
mobile agents are used when there is limited

capacity in computers. But at times, the systems

could not be able to run even the mobile agents. This
paper proposes an approach to execute mobile

agents on any sort of systems even with limited

capacity of Cloud. A platform that supports various
mobile agents depending upon the capacity of the

system will be developed. The mobile clients are

differentiated into two types depending upon their

capacity and the corresponding mobile agent is
chosen for the traversal.

Keywords – Cloud, Mobile agents, Mobile clients..

1 Introduction

CLOUD computing presents a new way to

supplement the current consumption and delivery

model for IT services based on the Internet, by

providing for dynamically scalable and often

virtualized resources as a service over the Internet.

To date, there are a number of notable commercial

and individual cloud computing services, including

Amazon, Google, Microsoft, Yahoo, and Salesforce.

Details of the services provided are abstracted from

the users who no longer need to be experts of

technology infrastructure. Moreover, users may not

know the machines which actually process and host

their data. While enjoying the convenience brought
by this new technology, users also start worrying

about losing control of their own data. The data

processed on clouds are often outsourced, leading to

a number of issues related to accountability,

including the handling of personally identifiable

information. Such fears are becoming a significant

barrier to the wide adoption of cloud services [30].

Mobile agents traverse between various mobile

clients for the execution of certain applications.

These mobile agents are used in order to overcome
the limited capability problem of mobile clients.

Even with mobile agents, a new problem arose.

The mobile clients were unable to run even the

mobile agents.

The mobile agents usually carry code to execute the
application and the data to be executed. This load is

minimized for certain mobile clients so that they may

execute mobile agents easily.

When the configuration of client is suitable

enough to send mobile agent containing both code

and data to server, then the same will be sent to

server. In the specialized search of a large free-text

database, it may be more efficient to move the

program to the database server rather than move

large amounts of data to the client program. The

result will be made available at the client.
When the client configuration is minimal, so

that mobile agent containing both code and data

cannot be sent to the

Server, then only the state of the client will be sent to

server. The code will be stored already in the server.

 Platform designed will obtain the

configuration of client associated. According to the

configuration the mobile agents will be sent, either

with state alone or with code also.

2 Existing works

Accessing a mobile agent is possible only with a

mobile client having sophisticated and powerful

resources. Sending a mobile agent to another
computer to do the data collection and computation

can save battery power. This also means that

heavy computations that will take long time on a

mobile device can be executed at a more powerful

computer with more memory, faster CPU and

without any power limitation. In addition, problems

with slow and error-prone network connections can

be reduced by dispatching the agent to another

machine, and get the agent with the result back

when finished. Most mobile devices will consume

a lot of battery power when transferring data over a
network a long period of time. Mobile agents can

reduce these problems.

Any application, to be run using mobile agents

is done as follows: The data and required code of

the application will be put together as mobile

agents and will be sent to the server. It will be

executed at the server and the results will be

available at the client.

The problem faced here was, executing mobile

agents at the client became difficult because of very

limited capacity.

mailto:kpkaliyamurthie@gmail.com
mailto:aro.antoni@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1354
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

3 Motivations

According to the survey in [8], Aglets, Voyager
and Grasshopper were among the four best mobile

agent platforms; their ranking was: 1) Grasshopper,

2) Jumping Beans, 3) Aglets and 4) Voyager.

Tryllian, JADE, Tracy and SPRINGS is also

available. The last version of Tryllian has been

released recently as open source, JADE is a very

popular platform for the development of agent-

Figure 1 Structure of Cloud

Based systems, the development of Tracy has led to

the publication of the most recent book on mobile

agents (since some years ago), and SPRINGS has

been developed very recently and offers a

promising scalability.

Cloud Computing
Acknowledging that “one model fits all” is unlikely
to be appropriate for the development of cloud

computing.

existing computing technologies. Different service

providers and vendors have their own

understandings about cloud computing so are their

designs and system implementations. It seems

impossible or improper to debate which one is the

best design and it's difficult for early cloud

computing developers and/or adopters to try out all
the possibilities.

The second argument is that cloud computing

platforms are still fast evolving. New features and

functions will emerge while new requirements are

proposing. It's unrealistic to assume that a pre-

designed system will fit all the future requirements.

is only emerged gradually from the existing

computing system as technology evolves. Therefore,
it's impossible to clearly define the boundary

between these two. In the others words, the new and

cloud based systems will incorporate many features,

components and data of the old systems and it is

hard to pre-define rigidly what the new system’s

shape would be beforehand.

All these observations suggest that we require a

framework where technical design options, system

construction approaches can be systematically

studied. The need for such a systematical study of

cloud system becomes even more important when

the dynamical adaptive resource provision becomes

desirable in a cloud system. That is, to be scalable

and sustainable, a cloud computing system needs a
form of meta-scalability which enables the system

to evolve along the complex environment in which

it operates. A system is said to be meta-level

scalable when it has the ability to adapt to any

change in an evolving environment. In the case of

cloud computing, a cloud platform is said to be

meta-level scalable when it is designed in such a

way that it can be reconfigured by its users or by the

system itself dynamically to satisfy specific needs,

emerging activities, means of coordination and

rules. This means that cloud platform designer
should adopt a different approach. They should

separately focus on the development of atomic

services of cloud computing systems and the

composition mechanisms of them.

4 Proposed System

In this paper, the proposal is made basically to
eliminate the limitations with minimal resource

mobile agents. Till now the mobile clients with

minimal resources cannot access mobile agents and

produce results successfully. To overcome this a
platform is been designed so that it works in two

different ways.

4.1 Differentiating mobile clients The

platform proposed for design will get the

configuration of the client. Using it, the mobile
clients will be differentiated into thick and thin

mobile clients.

4.1.1 Thick mobile client When the client is said
to have enough resources, it is called as thick

mobile client. When such a client is in use, both the

code and data is combined in mobile agent and sent

for execution. The result will be then sent back to
the mobile client. Thus the power of mobile device

is saved by making the execution done at some

other powerful system. The mobile agent used here
is called Thick Mobile Agent.

4.1.2 Thin mobile client: When the configuration

of the mobile client is not enough for a particular

application then it is called as Thin mobile client.

When such a client is in use, only the data called as

state will be sent to the server by using mobile
agents. The code for the application will be stored

already on the server. Thus, even if the mobile

client does not support the required resources, the

application could be executed. This method avoids

the excessive resource usage for dispatching the

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1355
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

code to the server. Tailoring for specific devices

can also be done to improve the usability of the

agent clients based on the screen size, graphical

capacities and data entry capabilities of the devices

5 Architecture

5.1 Thick client

For the thick client the database containing the

code (in a database) and the data to be executed
will be available.

 Fig: 1 Architecture

5.2. Thin client

For the thin client, database will not be

available. The code will be present only in the

server. Hence the data alone should be sent.

The thin clients also follow the same traversal

path, except that the code to execute the application

will be present in the server. In case of thin clients,

the dispatcher has some more work of combining

and splitting the code and data.

5.3 Platform

The platform will contain the decision maker.

The threshold values for decision making will be

present in the database already. This will be

specified depending upon the efficiency of the

clients.

The decision will be made based on the

capabilities like memory, processor, java support
etc. Extractor is used to extract the client

capabilities obtained from the initiator.

A central part of the architecture is the agent

system repository where agent information and

agents can be stored along with client information

such as client device capabilities. We have defined

a thin agent client that only deal with the agent
state, where the code of the agent will be stored on

the agent server. The thin agent client contains

code for transmitting and receiving agent data and a

simple GUI for manipulating this data. For devices

with sufficient memory and CPU, mobile agents

will run locally on the device. Above the repository

the general agent server services are located that

controls the essentials agent services such as

registration of agents, locating agents, management

of agent lifetimes (initiate agents, clone agents, kill

agents) etc. The rest of the architecture is split into
two main parts; one for thick agent clients, and one

for thin agent clients. The thick agent client is able

to execute mobile agents locally, while the thin

agent client only is able to manipulate the agent

data (state).

There is only one part that distinguishes the

architecture of the thick and thin agent client; the

Agent joiner/splitter. The Agent joiner/splitter

makes it possible to split the data and code of the

mobile agents before dispatching the agent to the

thin client. This makes it possible to access mobile
agents on less capable devices. The Agent initiator
is responsible for initiating the agent clients first

time, or reconfiguring the agent client based on

changes in the mobile agent software or

hardware/software changes in the client. Although

there are two Agent initiators drawn in the figure 2,

only one such service is running (same for thick

and thin clients). The last component of the

architecture is the Mobile Agent Dispatcher which

makes it possible dispatch agents between clients

and server. For thin clients the Agent joiner/splitter

is used to split the agent before dispatching to a

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1356
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

client, and to assemble the agent when received

from the client.

5.4 The Agent Initiator

When a client connects to the agent server for the

first time, it must state the client device capabilities
in terms of CPU speed, execution memory, storage,

and Java Virtual Machine edition and version.

Although a client device has enough memory and fast

enough CPU, there could e.g. be no Java virtual

machine available that support serialization
for the device. This is the reason that Java Virtual
machine is also a part of the client capabilities. The
capabilities are described in XML. Figure 6.1

shows an example of a description for a client running

on a Palm Tungsten T PDA. The client

01: <ClientCapabilities>

02: <Device>

03: <Name>Palm Tungsten T</Name>

04: <OS>PalmOS 5.0</OS>
05: </Device>

06: <CPU>

07: <Name>OMAP1510</Name>

08: <Type>32bits</Type>

09: <Speed>175MHz</Speed>
10: </CPU>

11: <Memory>
12: <RAM>16MB</RAM>

13: <Available>5MB</Available>

14: <Secondary>64MB</Secondary>

15: </Memory>
16: <Java>

17: <VirtualMachine>

18: <Edition>MicroEdition</Edition>
19: <Version>1.0</Version>

20: </VirtualMachine>

21: <VirtualMachine>
22: <Edition>SuperWaba</Edition>

23: <Version>1.3</Version>

24: </VirtualMachine>

25: </Java>

26: <Download>
27: <Type>Email</Type>

28: <AddInfo>james@bond.007</AddInfo>

29: </Download>

30: </ClientCapabilities>

When a mobile agent client is initialized the first

time, it follows the following process:

5.4.1. Install agent initiator: The agent initiator is

a simple Java program that must be installed on the

mobile device before installing the agent client.

This program is used for extracting device
capabilities on the client. The devices capabilities

that cannot automatically be detected must be

entered manually by the user. In addition, the agent

initiator contains software for communicating with

an agent server.

5.4.2. Configure the agent initiator: The user

should look through the device capabilities

detected, and add missing, or change faulty

information.
5.4.3. Initiate the agent initiator: The agent

initiator sends the device capability information to

the agent server.

5.4.4. Install agent client: Based on the device

capabilities, a suited agent client will be sent to the

device and then installed. The agent client can be

sent directly using the agent initiator, or indirectly

using transport channels such as email or HTTP-

download.

If any characteristics of the client are changed (e.g. a

new virtual machine for Java has been released), a
new initializing process is initiated. Also if there are

major changes of the agent system itself, the agent

server may initiate a client update process (similar to
the process shown above). The reason for this is that

the new version of the mobile agent system could

be more CPU and/or memory efficient than the

previous one, making it possible to run the full
mobile agent system on clients that previously were

not powerful enough.

5.5 The Agent Joiner/Splitter
For c l i e n t s t h a t c a n n o t r u n t h e m o b i l e

a g e n t s Locally (because of client capabilities),
we have designed an Agent joiner/splitter for
allowing these clients to access the agents anyway.

This is done by separating the state (or data) of the
agent with the code of the agent. This means that
the thin agent client only receives the data part
of the mobile agent while the code part resides on
agent server. In addition, the client on the mobile
device has a graphical user interface (GUI) making
it possible to instruct the agents. When the user
decides to send an agent from the mobile device,
the state of the agent is transmitted to an agent
server. This means that both the code and the
state of the agent are

joined on the agent server. Figure 4 illustrates the

process view of a migration of an agent (client

application) from the mobile device to the agent

server. When an agent migrates to another agent

mailto:james@bond.007
mailto:james@bond.007

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1357
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

server or thick agent client, both the code and the

state are transmitted (as for normal mobile agent

systems).

6 Issues to be concentrated

6.1 Agent Separation:

Since the mobile devices still have minimal
resources to run mobile agents, it was never an

option to run an entire agent on a mobile device. To
overcome this problem, the agent application was

separated in two parts (code and data), with only

the data residing on the mobile device along with

the user interface classes.

6.2 Writing to the Memory:

Since an agent can be configured to operate for a
long period of time, it was necessary to save the

agent ids in the non-volatile memory of the mobile

device. This makes it possible to exit the

application, and recall the same agent the next time

the application is started. J2ME’s Record

Management System (RMS) was used to store the

agent id.

7 Related Works

7.1 JADE

(Java Agent DEvelopment Framework) is a
software Framework fully implemented in Java

language. It simplifies the implementation of multi-

agent systems through a middle-ware that complies

with the FIPA specifications and through a set of
graphical tools that supports the debugging and

deployment phases. The agent platform can be

distributed across machines (which not even need

to share the same OS) and the configuration can be

controlled via a remote GUI. The configuration can

be even changed at run-time by moving agents

from one machine to another one, as and when

required. Although, it is possible to run JADE on

all devices that support J2SE, there are currently

only few mobile devices that are able to that. This

means that JADE only partially solves the problem
of running mobile agents on mobile devices, since

only the most powerful ones are capable

7.2 Mobile Information Agents
The aim of project MIA (Mobile Information
Agents) is to develop an intelligent information

system, which puts information of local relevance

from the World Wide Web into the hands of a

mobile user. All information needed for such a

system is available on the World Wide Web
somewhere. The MIA-project implements a system

that collects this information, and gives it into the

hand of the user. The MIA system also needs to

know where the user is. This can be done by using a

GPS-receiver or the mobile phone can be tracked in

the mobile network.

7.3 Personalized Information Retrieval Service

The design of a mobile-agent system that provides a
mobile user with a personalized information

retrieval service and we describe the

implementation of the infrastructure for such a
system. This “Personal Agent System” gathers

information from the Internet and uses context-

aware mechanisms to manage the information

according to a mobile user’s needs and preferences.
The user’s schedule and location are the context

indicators in this system. These indicators are

critical in ensuring that users obtain only the
information they want, receive information in a

form that is most useful for viewing on their mobile

device, and is notified of new information in a

minimally intrusive manner. The system
incorporates a rule-based learning system to

enhance the personalization achieved by the

system.

8 Conclusions

Mobile devices even with very limited

capability will be able to execute any sort of

application very easily. All the mobile devices may

not have enough capability to run certain large

applications, wherein this mobile agent platform

will be much helpful. Not all of these limitations
such as the screen size, network bandwidth, battery

capacity, and input devices, have much influence

on a mobile agent application. There are other more

noticeable constraints that limit an agent

application. However, these constraints are possible

to overcome by this platform.

9 References

[1] Comparison and Performance Evaluation of Mobile Agent

Platforms Trillo, R.; Ilarri, S.; Mena, E.; Autonomic and

Autonomous Systems, 2007. ICAS07. Third International

Conference on 19-25 June 2007 Page(s):41 – 41 Digital Object

Identifier 10.1109/CONIELECOMP.2007.66

[2] On the Performance of Distributed Search by Mobile

Agents. A. Mawlood-Yunis, A. Nayak, D. Nussbaum and N.

Santoro. Proc. 1st International Workshop on Mobility Aware

Technologies & Applications, 2004.

[3] Mobile-Agent versus Client/Server Performance:

Scalability in an Information- Retrieval. R. S. Gray, D. Kotz, R.

A. Peterson, J. Barton, D. Chacn, P. Gerken, M. Hofmann, J.

Bradshaw, M. Breedy, R. Jeffers, and N. Suri. Task. Proc. 5th

International Conference on Mobile Agents, pp. 229-243 , 2002.

[4] A mobile agent platform for active telecommunication.

C. B¨aumer and T. Magedanz. Grasshopper. In Third International

Workshop Intelligent Agents for Telecommunication Applications

(IATA’99), Stockholm, Sweden, pages 19–32, August 1999.

[5] Trusted Java Virtual Machine IBM,

http://www.almaden.ibm. com/cs/projects/jvm/, 2012..

[6] A FIPA Platform for Handheld and Mobile Devices.

Bergenti, Federico, Poggi, and Agostino. http://leap.crm-

paris.com/public/docs/ATAL2001 .pdf,2001.

[7] Mobile Information Agents for the WWW. MIA Research

http://www.almaden.ibm/
http://leap.crm-paris.com/public/docs/ATAL2001
http://leap.crm-paris.com/public/docs/ATAL2001
http://www.unikoblenz/

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1358
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Group. MIA - http://www.unikoblenz. de/Obthomas/MIA TML/,

2002.

[8] A survey and evaluation of agent platforms. K. Ludwig, A.

Josef, W. E. Edgar, S. Wolfgang, and G. Franz. In Second

International Workshop on Infrastructure for Agents, Multi-Agent

Systems, and Scalable Multi-agent Systems, at the 5th

International Conference on Autonomous Agents, Montreal,

Canada. ACM Press, May 2001.

[9] Design and implementation of a hybrid intelligent

 and mobile agent platform

Su-Zhi Zhang; Chun-Lin Li; Zheng-Ding Lu

Machine Learning and Cybernetics, 2003 International

Conference on Volume 4, Issue , 2-5 Nov. 2003

Page(s): 2025 - 2030 Vol.4 Digital Object

Identifier 10.1109/ICMLC.2003.1259836

[10] TILAB. JADE (Java Agent Development Framework).

http://sharon.cselt.it/projects/jade,2002.

http://www.unikoblenz/
http://sharon.cselt.it/projects/jade
http://sharon.cselt.it/projects/jade,2002

